ENERGY HARVESTING FOR WIRELESS AUTONOMOUS SENSOR SYSTEMS

Rob van Schaijk

SMART SYSTEMS EVERYWHERE

"Blood pressure too high"

"Traffic jam ahead"

"I'm sensing corrosion"

"We're ripe"

"I'm here Mummy"

"I'm all out of milk"

"Time for walkies"

"We're 98% full"

"You left me here"

"Send me energy"

The Economist

APRIL DEPARTMENT ATM THE

Meet Britain's next prime minister Will Africa ever get it right? In praise of Yeltsin The world's biggest banking battle Australia's water crisis

When everything connects

A 14-page special report on the coming wireless revolution

THE WIRELESS AUTONOMOUS SENSOR NODE

© IMEC 2011 / CONFIDENTIAL

CAN WE STICK WITH BATTERIES?

- Few specifications:
 - Smart systems everywhere
 - Large numbers
 - Accessibility to devices
 - Battery replacement is not always an option
 - Device autonomy exceeds lifetime
 - Size and Weight important factor

Thin-film-flexible

Lithium-flexible

Lithium-coin

Printable

PC5-5 2+ 5.%

Supercapacitor

© IMEC 2011 / CONFIDENTIAL

ONLY BATTERY

Small battery alone do not offer autonomy

ONLY HARVESTER

- Energy buffer in sensor system is essential.
 - NO buffer: harvested energy = Peak energy
 - With buffer: harvested energy = Average Energy
- A small battery or Super Capacitor is therefore needed

Power levels "MEMS" based harvesters*

*Vullers et al, Micropower Energy Harvesting, Solid-State Electronics 53 (7) Pgs 684-693, DOI: 10.1016/j.sse.2008.12.011

© IMEC 2011 / CONFIDENTIAL

APPLICATION FIELDS ENERGY HARVESTING

"NOT ENOUGH POWER IS GENERATED"

THE ENERGY BALANCE

For a successful introduction of MEMS based Energy Harvester:

- The Power usage needs to be reduced
 - Of the shelf components use 'too' much power
 - Power optimization needed towards ultra low power
- Energy harvesters have to increase power output
 - Increase of harvesting efficiency
 - Increase of conversion efficiency -> Power Management is key!

SOMETHING ELSE IS (REALLY) WRONG WITH ENERGY HARVESTING TODAY: <u>SCALING</u>!

DISPROPORTIONAL SCALING WITH MINIATURIZATION (CASE OF VIBRATIONAL ENERGY HARVESTING)

Power levels "MEMS" based harvesters

Advanc ed energy

VIBRATION HARVESTING: THREE MECHANISMS

Mechanical power generation: General principle

Holst Centre

Optimal transformation of mechanical energy into electricity occurs at the resonance frequency of the harvester!

INTELLIGENT TIRE

• Intelligent tire: measurement of forces for improvement of active safety systems

- Resonant excitation \leftrightarrow high acceleration shock
- Shock \rightarrow Self resonance \rightarrow ring down mode

80km/h \rightarrow \sim 20 shocks/sec

300G shock \rightarrow comparable to resonance at IG for Q=300

imec

© IMEC 2011 / CONFIDENTIAL

MEMS BASED PIEZOELECTRIC ENERGY HARVESTERS

PIEZOELECTRIC MATERIALS

$$FOM = \frac{e_{31}^2}{\varepsilon_r}$$

 e_{31} ~ -8 -12 C/m² e_r ~ 1000 tan d ~ 0.03 → high loss Z ~ few kΩ → < 0.1 Volt

• not IC fab compatible

SolGel

- limited thickness
- low reproducibility
- no topography allowed
- Sputtering
 - low deposition rate
 - composition control

 e_{31} ~ -1.1 C/m² e_r ~ 10 tan d ~ 0.003 → low loss Z ~ few MΩ → few Volt

AIN

- IC fab compatible
- Sputtering
 - high deposition rate
 - stoichiometric

Aluminum Nitride is good candidate for energy harvester

WAFER LEVEL PACKAGE

- SU-8 on rolling wheel
- wafer at elevated temperature (~80C)
- topography is no issue
- vacuum inside package

HARVESTER EFFECTIVENESS OF REPORTED DEVICES

LEAKAGE OF WAFER LEVEL PACKAGE

- Reduction of power due to air leak into package
- ~50% power loss in half year time
- Hermetic wafer level package (long term vacuum to minimize air damping)
 - Improvements of polymer based bonding
 - extra (metal) barriers
 - extra cavity
 - molding layer
 - Eutectic bonding

Power levels "MEMS" based harvesters

THERMO ELECTRIC ENERGY HARVESTING

Seebeck effect (mechanism) **Thermocouple structure** P-type TC leg interconnect N-type TC leg Substrate

Seebeck effect: Voc = Seebeck $* \Delta T$ Voltage output typically Human body $\Delta T \sim I-3 K$ few mV

Metal

MEMS BASED TEG ENERGY HARVESTERS; RESULTS

HISTORY OF MICROPOWER DEMONSTRATORS

FROST & SULLIVAN

2000

- show feasibility of WATS systems for body area networks
- use of off-the-shelf components
- supporting research by investigate limits
- Includes new technology and circuit designs developed by IMEC

•Has resulted in Frost & Sullivan Award for ECG shirt

Power levels "MEMS" based harvesters

RF ENERGY TRANSFER INSTEAD : THREE MECHANISMS

For use in WSN, battery needs to be recharged:

Minumum voltage is needed for IC = 0.2V

- \rightarrow Vout determines distance
- \rightarrow Pinc determines charging time

SMALL-SIZE RECTENNA APPLICATIONS

RF Battery charging

Charging 4.2V Li-Ion battery at 60 cm with EIRP=1.2W at 2.45GHz Charging 2.9V Li-Ion battery at 166 cm with EIRP=1.2W at 2.45GHz

Buck-boost converter V_{in-min}=0.21V, V_{out}=3.0-4.2V

Theoretical distances for single-cell rectennas

More cells is larger distance

SUMMARY

- For autonomous wireless sensor system one needs:
 - Small low cost energy harvester
 - Power optimization of complete sensor system
 - Harvester + power management + energy storage

- MEMS technology
 - Capable of 100µW/cm²
 - Key for mass application
- Still in research phase
 - Higher power output needed
 - Reliability and robustness

IMEC SMART SYSTEMS

Building a flexible interactive world

THANK YOU FOR YOUR ATTENTION.

